Fixed points on flag manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Geometry of Fixed Point Varieties on Affine Flag Manifolds

Let G be a semisimple, simply connected, algebraic group over an algebraically closed field k with Lie algebra g. We study the spaces of parahoric subalgebras of a given type containing a fixed nil-elliptic element of g⊗k((π)), i.e. fixed point varieties on affine flag manifolds. We define a natural class of k-actions on affine flag manifolds, generalizing actions introduced by Lusztig and Smel...

متن کامل

FIXED POINTS OF UNITARY Z/p -MANIFOLDS

Let G = Z/ps ( p an odd prime). We show that restricting the local representations in a unitary G-manifold M with isolated fixed points results in severe restrictions on the number of fixed points (counted with the sign of their orientation), paralleling results obtained by Conner and Floyd in the case G = Z/p . Specifically, the number of noncancelling fixed points is either zero or divisible ...

متن کامل

Invariant manifolds near hyperbolic fixed points

In these notes we discuss obstructions to the existence of local invariant manifolds in some smoothness class, near hyperbolic fixed points of diffeomorphisms. We present an elementary construction for continuously differentiable invariant manifolds, that are not necessarily normally hyperbolic, near attracting fixed points. The analogous theory for invariant manifolds near hyperbolic equilbria...

متن کامل

Isolated Fixed Points and Moment Maps on Symplectic Manifolds

Let (M, ω) be a compact connected symplectic manifold of dimension 2n equipped with a symplectic circle action. In this paper we show that if the fixed point set is non-empty and isolated then the symplectic circle action must be Hamiltonian. This extends the results of Tolman–Weitsman and McDuff, and proves their conjecture affirmatively. The main strategy is to use a variant of the Euler numb...

متن کامل

Completely Integrable Torus Actions on Complex Manifolds with Fixed Points

We show that if a holomorphic n-dimensional compact torus action on a compact connected complex manifold of complex dimension n has a fixed point then the manifold is equivariantly biholomorphic to a smooth toric variety.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1982

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1982.101.303